18.03 Differential Equations, Notes and Exercises Ch. O
ثبت نشده
چکیده
(3) yc = c1y1 + . . .+ cnyn , ci constants, where the yi are n solutions to (2) which are linearly independent, meaning that none of them can be expressed as a linear combination of the others, i.e., by a relation of the form (the left side could also be any of the other yi): yn = a1y1 + . . .+ an−1yn−1 , ai constants. Once the associated homogeneous equation (2) has been solved by finding n independent solutions, the solution to the original ODE (1) can be expressed as
منابع مشابه
Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملAn efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کامل